หลายองค์กรเชื่อว่าโครงการ Data Analytics เป็นหน้าที่ของ Data Scientist เท่านั้น ซึ่งเป็นความเชื่อที่ผิดเพราะ Data Scientist มีหน้าที่สร้าง Model แต่จะมีจุดอ่อนด้านการบริหารข้อมูลและ Business Domain ในเรื่องนั้นๆ
อย่างไรก็ตาม Data Scientist ที่ไม่มีประสบการณ์ มักจะคิดว่าตัวเองสามารถทำงานได้ครอบคลุมทั้งหมดเพราะยังขาดประสบการณ์ในการทำงานจริง
หากเปรียบเทียบกับการผ่าตัด ที่ต้องมีแพทย์ผ่าตัดผู้เชี่ยวชาญ วิสัญญีแพทย์ พยาบาล เภสัชกร และผู้ที่เกี่ยวข้องอีกหลายส่วน ไม่ต่างกันกับโครงการ Data Analytics ที่จำเป็นต้องมีผู้เชี่ยวชาญในหน้าที่ที่หลากหลายด้วยเช่นกันเพื่อให้โครงการดำเนินการได้อย่างประสบความสำเร็จ
2. ข้อมูลที่มีการบริหารจัดการที่ดี
ความพร้อมของข้อมูล เป็นส่วนที่สำคัญที่สุด เพราะข้อมูลถือเป็นทรัพยากร เพื่อใช้วิเคราะห์ หรือสร้าง Model
ทั้งนี้โครงการ Data Analytics ที่ประสบความสำเร็จ มักเกิดขึ้นหลังจากการบริหารข้อมูลหรือมี Data Management ที่ดีเสียก่อน
3. โจทย์และความต้องการที่ชัดเจน
หลายโครงการเกิดขึ้นโดยไม่มีโจทย์แต่เป็นความต้องการที่จะทำโครงการ เช่น ดูสิว่ามีข้อมูลอะไรบ้าง ทำอะไรได้บ้างหรืออยากทำโครงการ Big Data อะไรก็ได้ที่เป็น Big Data เป็นต้น ทำให้สุดท้ายแล้วโครงการ Data Analytics ส่วนใหญ่ เป็นงานวิจัยที่ไม่ได้นำมาใช้งานได้จริง ซึ่งนอกจากจะเป็นการเสียเวลาแล้วยังเป็นการลงทุนที่ฟุ่มเฟือยอีกด้วย
ความเป็นจริงแล้วโครงการ Data Analytics ควรเกิดขึ้นจากโจทย์และปัญหาที่ต้องแก้ไข เช่น ต้องการวิเคราะห์การบริหารคลังสินค้า เพราะมีปัญหาสินค้าค้างเหลือจำนวนมาก ต้องการวิเคราะห์วิธีการจัดสรรงานเพราะทุกวันนี้ใช้การตัดสินใจหน้างานทำให้ล่าช้า เป็นต้น
สุดท้ายนี้ การวางแผนสำหรับโครงการ Data Analytics ที่ดี ควรมีการวิเคราะห์ Return of Investment เพื่อประเมินความคุ้มค่าของโครงการที่ชัดเจนเพื่อเป็นเป้าหมายและตัวชี้วัดของโครงการเปรียบเสมือนเป็น KPI ของทีมงานที่ต้องทำให้เป็นผลสำเร็จ แต่หากโครงการนั้นไม่สามารถให้ ROI ออกมาได้ก็แสดงว่าการดำเนินโครงการ Data Analytics อาจจะกำลังหลงทางก็เป็นได้